.Q AGNISYS

SYSTEM DEVELOPMENT WITH CERTAINTY

THE MOST COMPREHENSIVE &
CUSTOMIZABLE SOLUTION

FOR AUTOMATED SOC ASSEMBLY
& HARDWARE-SOFTWARE
INTERFACE (HSI) DESIGN

What's Inside

Design entry using an integrated development system

Import SystemRDL, PSS, IP-XACT, YAML, RALF, CSV, JSON, and custom XML

Parameterize and generate RTL Code and UVM register models

Generate C/C++ header files, C-tests, APl and classes

Generate SoC datasheet documentation as HTML, PDF, Markdown, and Word documents
Generate a complete UVM test environment with sequences

Specify algorithms and generate portable sequence code for verification, firmware and
post-silicon validation

Assemble the entire SoC
Get the best support in the EDA industry
Industry standards-compliant and certified by TUV SUD for ISO26262

What's the root cause of functional flaws?
The functional specification remains the number one root cause of
IP/SoC functional flaws. It's also the main source of all design and
verification activities. Any errors in the specification often lead to
higher costs for fixing them and can even be the difference between

success and failure for a given project.
The Hardware/Software Interface (HSI) data is a major component of

the specification because it controls the configuration of peripherals
and their communication with the software.

The HSI

Includes the definition of addressable registers, interrupts,
sequences, ports, and APls

Is often manually captured and maintained in Word™ or Excel™, and
used in conjunction with various files such as IDSNG or SystemRDL

Isused by multiple isolated teams including system architects, design-
ers, verification engineers, firmware developers, lab testers, and
software developers

Registers need to be designed in SystemVerilog or VHDL, and the
corresponding UVM models need to be created for verification
C/C++ APlIs are needed for the development of the firmware

The documentation is central to the correct and timely development
of the IP/SoC

FIRMWARE PROTOTYPE

PROGRAMMERS ENGINEERS
=
BRINGUP
ENGINEERS

< TECHNICAL
DESIGNERS % .‘ AGN ISYS TECHNIC
P usren oeveiomentms cenmanty
ARCHITECTS ™ CAD ENGINEERS/
PROCESS ENGINEERS

Specification to code generation
How much time do you spend creating register design files, and

verification environments?
Did you know that you can save precious time in your development

schedule and bridge the gap between specification, design,

verification, and validation?
How much time does your team spend in connecting 3rd party or home

grown IPs? How many design flaws are introduced when hierarchy
restructuring is done manually? How much time do you spend creating
register design files, and verification environments?

VERIFICATION

ENGINEERS @

Did you know that you can save precious time in your development
schedule and bridge the gap between specification, design, verification,
and validation?

With the amount of data and the various SoC teams who create and rely on
the HSI, it can easily get chaotic without a process in place - this is the
primary reason why the specification is the main culprit of functional flaws.

Industry’s most comprehensive and powerful
HSI design and verification solution

Established in 2007, Agnisys® has been exclusively focused on solving
the challenges associated with HSI. Our intuitive register and sequence
editors are easy to use, and the powerful code generators are customiz-
able for generating signoff quality code in different formats for various
IP/SoC teams. You can specify a single test sequence and our portable
sequence generator generates sequences in various formats. We gener-
ate a complete UVM test environment that provides 100% register
functional coverage without manually writing any UVM code.

We generate C tests as well as a hybrid C-UVM environment that helps
validate your design in a system context. All the above and much more
can be accomplished using the IDesignSpec Suite that includes:

IDesignSpec™ GDI IDS-Verify™ IDS-Integrate™
IDS-Batch™ CLI IDS-Validate™ IDS-IPGen™

IDesignSpec™ GDI : Graphical Design Interface

and Interactive Generator

Originally developed in 2007, our Editors are equipped with
user-friendly register templates to assist you during register specifica-
tion. Simple and complex registers can be created hierarchically such
that large SoC designs are divided into manageable sub-blocks that are
represented symbolically, designed, and connected together. This
methodology enables you to work on different parts of the design in

parallel with a large team.
Using IDesignSpec™ GDI graphical interface and interactive generator, the

IDS-NG™ editor or an add-in for Word, Excel or OpenOffice allow you to:

Specify the registers including register field names, widths, descrip-
tion, and access types, and various properties

Import and integrate IP-XACT, SystemRDL, YAML, or JSON

Define RTL Properties for clocking, reset, special registers, counter,

interrupt, multiple domains, and memory mapping technology
Parameterize the auto-generated code using static values and

expression with common operators
Check for 1000s of consistency errors

el [| = [

T Tow Slbw ® defll ¢ descripion :
w 0x10 211 bit field
3 10bitfeld

©

0s30 2 11bitfeld

020
[z
Hardware| | pefauit
access value

IDesignSpec™ GDI

N
s

Software
access

N
e
e

With our extensive support for parameterization, you can specify
various parameters and use them as macros in the specification. The
value of the parameter can be static or based on expressions.

The specification linter helps you create a correct-by-construction
specification by checking the following data:

Address calculation and back-annotation on the specification
Inserts Register Map - Table of Contents (address, default values)
Overlaps (bit, register, reggroup, and block)

Incomplete data or incorrect data

Duplicate or illegal names

Invalid access or incompatible access

Third-Party Data
SystemRDL IP-XACT PSS Word Excel Agnisys XML YAML JSON CSV RALF Custom XML

l l

IDesignSpec GDI™
Graphical Interface & Interactive Generator
IDSWord, IDS-Excel, IDS-NG

v 4

Generated Outputs

Reg XML
(p-xact L uvmraL il cice+
2N D Model Headers
IP-Xact Code
2014)

IDesignSpec™ GDI data flow diagram
Benefits of IDesignSpec™ GDI

Tel, Python,
and Velocity

Based
Custom
Outputs

Includes a platform-independent editor that enables you to capture

the specification of your IP/SoC
Word/Excel-like Reg field view to create specification on any platform

Enterprise team can collaborate and create IP/SoC with versioning

and configuration using Git integration feature
A single Ul for capturing all information related to IP/SoC

Capture sequences and checker view for registers
Code Generation

Based on the golden specification, various SoC teams can use the

high-performance code generators via the GUI through IDesignSpec
GDI or the command line using IDesignSpec™ CLI.

™

IDesignSpec™ CLI: Command Line Generator

IDesignSpec™ CLI is a command line tool for transforming register
specifications. It accepts various input formats and can generate a
variety of outputs. IDesignSpec™ CLI supports more than 400 special
register types, including indirect, indexed, read-only/write-only, alias,
lock, shadow, FIFO, buffer, interrupt, counter, paged, virtual, external,
read/write pairs, and combinations of these types. This tool is typically
used by design, verification, firmware, and documentation groups for
managing register map and memory map information.

RTL Code Generation

The generated VHDL, Verilog, SystemVerilog, or SystemC for the
registers is human-readable with easy-to-follow comments. The RTL
also includes a bus slave and decode logic specific to the bus protocol
(APB, Avalon, Wishbone, AHB, AHB-Lite, AXI4, AXI5, AXIl4-Lite,
Tilelink, 12C, SPI, or Custom), ensuring instant connection of the
application logic to the register bus.

. bus slave wr_valid
Register — e
bus — rd_valid
A Widget
—
—
—
rd_data decode wr_valid external register
B logic
—
<reggroup>_<reg>_enb
internal register
el reser 2 b
<reggroup> _<reg> _<field>|_r
r
<reggroup>_<reg> _ <field}_in
internal
registers
read-back rd_data
mux
Software Hardware initiated
b register access
initiated ¢
Register
access Register Bus Core H/W Clock
Clock domain domain

RTL generated by IDesignSpec™ GDI
A comprehensive list of RTL Properties can be defined hierarchically in

the golden specification and reflected in the generated RTL code.
This leads to a more customizable RTL to meet your design require-

ments. For example, you can easily specify clock edge=posedge,
reset type=async, or reset level=high,and the generated

RTL code reflects them.
The RTL Properties can be used to specify special registers such as

Shadow, Interrupt, Counter, Alias, Indirect, Lock, FIFO Trigger Buffer,

Wide, Multi-Dimensional, RO-WO Pair, Virtual, TMR, and Paged registers.

The generated RTL code supports the following:

External Registers - a register or reggroup implemented by the user

outside the generated RTL
Pipeline Stages - in order to meet special timing requirements

Special Control Signals - examples include Write Pulse, Write One Pulse,

Write Zero Pulse, Read Pulse, and Clearing field on remote signals

Low Power Output - eliminates assigning the same value at every

clock edge or eliminating write operations altogether
Functional Safety and Other Advanced Features

When we generate RTL registers, we build a system with automatic

protection against failures requiring additional features such as:

Parity: Adds a parity bit to a sequence of binary valued registers in the
digital logic so that any corruption of the design by a single bit would
lead to an inversion of polarity and would be detected.

CRC: Calculated on a piece of the time of transmission (write transac-
tion) and checked at the receiver time (read transaction).

SECDED: Single Error Correction, Double Error Detection, which
generates parity bits for some data bits, transmits the parity bits along
with the data, and checks at the receiver's end by generating parity
bits for the data using the same method, and then XORing with the
transmitted parity to check if an error occurred or not.

Additional advanced features are required for complete SoC development:
CDC: Various IP blocks within an SoC are often required to work in
different clock domains in order to satisfy the power constraints.
Various techniques such as mux synchronizer, flop synchronizer, and
handshake synchronizer are used to avoid metastability as signals
cross from one clock domain to another.

MBD: You can specify multiple bus domains in which the block or chip
resides. Two or more domains can be described; this architecture is
widely used for improving performance

Clock Gating: This is a method to turn off the power when it is not
needed. Itis used in SoC design today as an effective technique to save
power.

C Header Files and APl Generation
Other project-critical files can be generated, including SystemRDL,
CMSIS-SVD, IP-XACT, and XML as well as the C/C++ header files and
API needed by the software team.
The Document Generator can output file formats such as HTML, Markdown,
DITA, .doc, .PDF, xls, IP-XACT, or SystemRDL, which are customizable.
Output Customization
You can customize the outputs using our Velocity Template based on a
very simple architecture with two components: a data model and a
template. The data model is basically the input which describes the
design specification, and the template is a plain text file that describes
the static output and dynamic elements from the data model. This
enables you to generate specialized code and documents required by
your customers.

In addition, Tcl and Python APIs are provided to create custom outputs.

You can use these to create workflows based on your specific needs

IDS-IPGen™: Configurable Standard and Custom IP

A collection of standard IP generators is provided to accelerate your
development. IPs such as GPIO, PWM, PIC, Timer, SPI, 12C, 12S, AES,
UART, and DMA are currently included in the library. So why waste time
on creating them manually when you can generate them?
All IPs are totally configurable and customizable (e.g., adding your
own registers to IP register space).
Customization includes: Adding fields to existing registers, adding
additional registers, and even having dependencies on IP events and
adding arbitrary logic to the IP.
Unencrypted code: All the generated files are available as plain text
for easy debugging and use by downstream tools.
IPs come with standard programming sequences so the firmware/-
software team can program them.
Once the register specification is captured, designers work on creating a
synthesizable application logic layer for the intended functionality using
these addressable hardware registers. Creating this application logic
layer often consists of using various design constructs. Automation
techniques save time and eliminate the manual work of creating
application logic with the help of IDS-IPGen™.

Register/Memory Sequence
SystemRDL Excel and NG
IP-XACT formats
All GDI formats PSS Python

Input
Specifications

IDesignSpec™ GDI / Batch CLI
IDS-IPGen™

Tests and Envir

. - .
Generated l l l
Outputs
D::i;n UVM RAL uvm
Model Tests
Code

IDS-IPGen™ Data Flow

IDS-IPGen offers the creation of a synthesizable RTL application
logic layer, a UVM prediction model, and tests by using a few
predefined templates

The following outputs can be generated by IDS-IPGen:

RTL design code
UVM model
These templates capture all the necessary information required to
build up an application logic, including:
Finite state machines (FSMs)

Custom flip flops

Automated tests
Deadlock Detection

Continuous assignments

PDII.H-M_:I e b B i [
g
e = LOADH
RESET -, comber_pag =
news_seuie = BESET
o)
st = LT[R
LOWE L commten_pry = biocic | o o
re_smute = EONT_DECR

i alunare_idecu_san_vall - pasmmen e b o= i _dben vl [
RESET P T
wT_pa L L
TOLNT_NCR i | st [
= COUNT_[NCR xmmber_rog = cowmter_ing ~ mor_deor_v
alicosmarr_ieyg - un_deor_san_val) == mer,_ ey val)]
e . ovmner g = s _dece_um_val
st |
comier_yey = commier_rey - wer_decr_val

COUNT_DECR

e amena 6V N MW

UVM Model Generation

The generated UVM register model is also human-readable, with
easy-to-follow comments, and includes hierarchy, register arrays,
memories and coverage, constraints model, and hdl_path. Special
registers specified in the spec using properties are also implemented so
as to reflect their behavior accurately.

By defining a UVM property called “coverage” you can control the
coverage for any particular register, reggroup, memory, or block. This
property is hierarchical so if applied at the chip level then it automati-
cally sets the coverage for the rest of the elements.

You can add the hdl_path using a property named “hdl_path” with a
value set to the hierarchical path. hdl_path is a mechanism by which
each individual element in a UVM model is connected to the RTL model
of the element.

Beyond the UVM Register Abstraction Layer (RAL) model, the
IDesignSpec™ Suite can also generate the register tests, environment,
and formal assertions using IDS-Verify™.

IDS-Verify™: Verification Tests and Environment

Our solution automates the tedious effort of creating a UVM based
verification environment that provides ~100% functional coverage for
registers. You can obtain faster coverage closure with the use of
constrained-random stimulus generation, and auto-generation of
coverage groups and illegal bins for different register behavioral

scenarios.
Based on the golden specification, you can generate the following for
verification:

Complete and fully connected UVM test environment including
components, hdl_paths, covergroups, constraints, and illegal bins.

Sequences for positive and negative register functionality.

A “Makefile” to run the simulations and collect results from the
simulation database, appropriate for the simulator being used (Xceli-
um, Questa or Riviera-PRO).
The following tests are automatically generated:
UVM standard sequences
Sequences for all register/field access
Sequences for special registers such as Lock, Shadow, Virtual,
Counter, Interrupt, Alias, etc.

UVM TEST -

VIP

Library

UVM ENV

Reg Bus Agent

=
[rewnmore

Auto
Generated
I User Created

3rd party
provided

Tapper!
interfade (tif)

1

1

- — - >

DUT

Component -
interface (cif)

Legend

SV events

______ SV transactions

SV Class based
Function calls

Generated UVM Testbench
Automatic Register Verification flow chart and generated environment

Based on the golden specification, you can also generate the following
code for formal verification:

SystemVerilog properties and assertions to check the register access
policies and compliance to bus protocols

Top-level file to bind your design RTL as well as third-party design IP
with the assertions.

Assertions generated include:

Concurrent assertions to check the HSI

Assertions for special registers such as Lock, Shadow, Virtual, Alias,

Interrupts, RW Pair, etc.

Assertions to check connections at the SoC level

Assertions generated in RTL for SystemVerilog constraints

With IDS-Verify™, we can also specify custom register verification test
sequences at a high level and generate the UVM tests and environment.
This saves time for IP verification. IDS-Verify™ also includes a sophisti-
cated syntax and semantics checker for the sequence descriptions to
catch common user errors.

Benefits of IDS-Verify™

Complete UVM infrastructure (regmodel, agents, coverage collector,
and functionality based checkers)

Support for multiple buses

Makefile for Xcelium, Questa, and Riviera-PRO simulators
Run standard UVM tests
Auto mirroring of registers

Generate test sequences for registers both simple and complex

Automatic generation of SystemVerilog properties and assertions to
check the register access policies and compliance to bus protocols

Register/Memory
SystemRDL, IP-XACT
All GDI formats

Checker and
Coverage Excel and
NG formats Python

J

Sequence Excel and
NG formats Python,

Input

Specifications

Generated
Outputs

U

[

PSS

IDesignSpec™ GDI / Batch CLI

IDS-Verify ™
SoC Verification and Validation

l

UVM Tests and

Sequences

{

System Verilog
Assertions

l

Complete UVM
Testbench

IDS-Verify™ Data Flow

Going from SystemVerilog based verification to C based validation
tests is done using IDS-Validate™.

IDS-Validate™: Validation Tests and Environment

C-tests and API are automatically generated from the register specifi-
cation based on different bus access types and register properties.

Automated tests for special registers, special register accesses,
Interrupts, volatile registers, etc. with 100% out-of the box functional
coverage.

Custom sequence API can be created and hooked into the environment
from a single source.

On-chip debugging through openOCD that accesses the SweRV JTAG
interface virtually.

System emulation environment can be created around the SweRV core
for dynamic applications to be built on the Zephyr OS to test the IPs.
Centralize creation of custom portable sequences from a single specifica-
tion and generate various output formats for multiple SoC teams:

UVM, System Verilog, HTML Programmer’s Reference
C,TCL,CSV or MATLAB Platform Manual
Register/Memory J Sequence J
SystemRDL, IP-XACT PSS Python
All GDI formats Excel and NG
formats

Input
Specifications

IDesignSpec™ GDI / Batch CLI

IDS-Validate™

ion Tests and

= =
Generated l
Outputs
Processor UVM
C/C++ API Based Sequences
S cs

C/C++ Tests 1
Environment

Programmer’s
Reference
Manual

sV Seclquences

IDS-Validate™ Data Flow

Portable Sequences
Just as you can automate the registers, you can also automate the
algorithms used to program these registers. When there are thousands of
registers, there are millions of ways to program them and one wrong step
could cause system failure. These register programming sequences are
used by multiple teams involved in verification and post-silicon validation
stages. But most teams lack a unified flow for creating sequences.
Our solution unifies the creation of portable sequences from a golden
specification. You can capture the sequences in Python,spreadsheet or
PSS(Portable Stimulus Standard) format and generate multiple output
formats for a variety of domains:

UVM sequences for verification

SystemVerilog sequences for validation

C code for firmware and device driver development

Specialized formats for automatic test equipment (ATE)

Hooks to the latest Portable Stimulus Standard (PSS)

Documentation outputs such as HTML and graph

APC (AGNISYS PSS COMPILER/EDITOR)

Integration of a dedicated PSS (Portable Stimulus and Test Language)
Editor. This new addition enables you to work with PSS files, create and
edit portable stimulus models and tests with ease and ensures a seamless
experience for engineers and testers working with this industry-standard
language.

The sequence constructs include loops, if-else, wait, and switch
statements to change the interfaces, specify encoding formats, deal
with time-unit differences, use macros, specify variants, and use return
statements to return user errors from sequences. The constructs
support constrained variables for randomized sequences, and handling
of indirect and interrupt registers.

The sequences support the following:
Read/Write on repeated components, hardware interface, signals, and
external memories
Read_check command to detect mismatch in write/read
Sanity checking for sequences, e.g., wrong register used in sequence
step, value written to read-only register, etc.
Structures in arguments:- refers to the datatype of the argument

Configurable data types for variables/arguments, concatenation of
variables, and arrays
Optimized firmware sequences by Read-Modify-Write

I1SequenceSpec™ Portable
Editor / Python Sequence Specification

Register Data

IP-XACT, SystemRDL,
RALF, XML, Word Excel, OpenOffice

I1SequenceSpec™

]‘ Generator

IDesignSpec™

)4

SECQUENCES
UVM-SV

Verilog for validation
Automatic Test
Equipment

Matlab

Documentation

Excel
HTML

IDS-Integrate™: Smart SoC Assembly

Manually hooking up hundreds or thousands of blocks into a top-level SoC
designis atedious and error-prone process. Agnisys® has a solution to apply
specification automation to SoC-level assembly and interconnection.

RTL
Verilog/SV

Hand Coded and/or
Tool generated RTLs

Verilog

System
Verilog

IP-XACT

Block

t Diagram

Tcl/Python
IDS-Integrate APIs

Connectivity Spec

Third Party IPs
(IP-XACT/RTL)

Assertions

bugms

Generated SoC
Collaterals

Supported Input Formats
IP-XACT (2009, 2014, 2022)
System Verilog

Generated Outputs
RTL (Verilog, System Verilog)

IP-XACT (2009, 2014, 2022)
SystemVerilog Assertions

Verilog (1995, 2001)

Schematic Diagrams
C/C++ Header (requires IDS)

A flexible and customizable environment for design assembly

Helps create, package, integrate, and reuse IPs and SoC/FPGA

Supports the latest IP-XACT standard and popular vendor extensions in
addition to RTL (Verilog/SystemVerilog) and other IDesignSpec™ Suite
supported formats

Smart assembly, as it generates components such as aggregator, bridges,
and muxes, as needed

Flexibility to abstract ports to efficiently capture connections

Ability to easily specify tie-offs, intentional opens, and other special cases,
where needed

Ability to easily reconfigure an IP as needed or update the current version
with a later version

Built in design rule checks to validate design connectivity before generat-
ing RTL

Generating SystemVerilog assertions for connectivity checks using formal
tools

Providing an intuitive graphical view of blocks and their connectivity
with simple navigation through the chip hierarchy

TGl support

Support for automatic generation of multi-initiator and multi-target
crossbar with arbiter as needed

Glue logic support for various logic gates

Schematic editor for interactive GUI editing of designs

Register / Memory
SystemRDL, IP-XACT ".':eﬂ";“e:"'s
All GDI formats / cUviicn
Plugins

Input ﬂ l
Specifications

IDesignSpec™ GDI / Batch CLI

IDS-Integrate™
Smart SoC Assembly

Generated]
Outputs l l l l

Verilog / SV IP-XACT D i Block Diag
View

IDS-Integrate™ Data Flow
Specialized Solution Packages

ABOUT AGNISYS®

Agnisys®, Inc. is the leading supplier of Electronic Design Automation (EDA)
software for solving complex design and verification problems for system develop-
ment. Its products provide a common specification-driven development flow to
describe registers and sequences for system-on-chip (SoC), Field Programmable
Gate Array (FPGA), and Intellectual Property (IP) enabling faster design, verifica-
tion, firmware, and validation. Based on patented technologies and intuitive user
interfaces, its products increase productivity and efficiency while eliminating
system design and verification errors. Founded in 2007, Agnisys® is based in Boston,

Massachusetts with R&D centers in the United States and India.

US CORPORATE OFFICES

0 East Coast

75 Arlington St. Suite 500
Boston, MA — 02116

IDesignSpec™ GDI for FPGA

IDesignSpec™ GDI includes support for your FPGA designers. IDesignSpec
™ GDI can read the specifications for pre-defined IP blocks provided by
FPGA vendors for integration into larger designs. IDesignSpec™ GDI
generates UVM models, C/C++ headers, and documentation for these IP
blocks automatically. IDesignSpec™ GDI also generates target scripts for
use in the FPGA vendor implementation tools. Agnisys® directly partners
with both Xilinx and Intel to support your team.

IDS Tool Qualification Kit for Functional
Safety (ISO 26262)

The IDesignSpec™ Suite of software products and development flow have
been certified by the internationally recognized testing organization TUV
SUD as achieving the stringent tool qualification criteria defined in the
ISO 26262 functional safety standard for road vehicles. The certificate
also covers the IEC 61508 industrial functional safety standard. The
process of certification by TUV SUD included an audit of the Agnisys ®
safety management, tool development, and supporting processes.

O +1(855) VERIFYY [+1 (855) 837-4399)

© + (866) 927-3653 (fax)

